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XVI. On the Commumnication of Vibration from a Vibrating Body to a surrounding Gas.
By G. G. Sroxes, M. 4., D.C.L., Sec. B.S., Fellow of Pembroke College, and Lucasian
Professor of Mathematics in the University of Cambridge.
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IN the first volume of the Transacticns of the Cambridge Philosophical Society is a
short paper by Professor Joun LesLig, “ On Sounds excited in Hydrogen Gas,” in which
the author mentions some remarkable experiments indicating the singular incapacity of
hydrogen for becoming the vehicle of the transmission of sound when a bell is struck in
that gas, either pure or mixed with air. With reference to the most striking of his
experiments the author observes (p. 267), “The most remarkable fact is, that the
admixture of hydrogen gas with atmospheric air has a predominant influence in blunting
or stifling sound. If one half of the volume of atmospheric air be extracted [from the
receiver of the air-pump], and hydrogen gas be admitted to fill the vacant space, the
sound will now become scarcely audible.”

No definite explanation of the results is given, but with reference to the feebleness
of sound in hydrogen the author observes, “ These facts, I think, deper.d partly on the
tenuity of hydrogen gas, and partly on the rapidity with which the pulsations of sound
are conveyed through this very elastic medium;” and he states that, according to his
view, he “should expect the intensity of sound to be diminished 100 times, or in the
compound ratio of its tenuity and of the square of the velocity with which it conveys
the vibratory impressions.” 'With reference to the effect of the admixture of hydrogen
with air he says, “ When hydrogen gas is mixed with common air, it probably does not
intimately combine, but dissipates the pulsatory impressions before the sound is vigo-
rously formed.”

In referring to LESLIE'S experiment in which a half-exhausted receiver is filled up with
hydrogen, Sir Jou~y HEerscHEL suggests a possible explanation founded on Darron’s
hypothesis that every gas acts as a vacuum towards every other®. According to this
view there is a constant tendency for sound-waves to be propagated with different velo-
cities in the air and hydrogen of which the mixture consists, but this tendency is con-
stantly checked by the resistance which one gas opposes to the passage of another,
calling into play something analogous to internal friction, whereby the sound-vibration
though at first produced is rapidly stifled. Air itself indeed is a mixture; but the
velocities of propagation of sound in nitrogen and oxygen are so nearly equal that the
effect is supposed not to be sensible in this case.

# Encyclopedia Metropolitana, vol, iv, Art. Sound, § 108.
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448 PROFESSOR STOKES ON THE COMMUNICATION OF VIBRATION

This explanation never satisfied me, believing, as I always have done, for reasons
which it would take too long here to explain, that for purely hydrodynamical phenomena
(such as those of sound) an intimate mixture of gases was equivalent to a single homo-
geneous medium. I had some idea of repeating the experiment, thinking that possibly
Lesuie might not have allowed sufficient time for the gases to be perfectly mixed,
though that did not appear likely, when another explanation occurred to me, which
immediately struck me as being in all probability the true one.

In reading some years ago an investigation of Mr. EArRNsHAW’S, in which a certain
result relating to the propagation of sound in a straight tube was expressed in terms
among other things of the velocity of propagation, the idea occurred to me that the
high velocity of propagation of sound in hydrogen would account for the result of
Lrsuip’s experiment, though in a manner altogether different from anything relating to
the propagation of sound in one dimension only.

Suppose a person to move his hand to and fro through a small space. The motion
which is occasioned in the air is almost exactly the same as it would have been if the
air had been an incompressible fluid. There is a mere local reciprocating motion, in
which the air immediately in front is pushed forwards, and that immediately behind
impelled after the moving body, while in the anterior space generally the air recedes
from the encroachment of the moving body, and in the posterior space generally flows
in from all sides, to supply the vacuum which tends to be created; so that in lateral
directions the motion of the fluid is backwards, a portion of the excess of fluid in
the front going to supply the deficiency behind. Now conceive the periodic time of
the motion to be continually diminished. Gradually the alternation of movement
becomes too rapid to permit of the full establishment of the merely local recipro-
cating flow; the air is sensibly compressed and rarefied, and a sensible sound-wave (or
wave of the same nature, in case the periodic time be beyond the limits suitable to
hearing) is propagated to a distance. The same takes place in any gas; and the more
rapid be the propagation of condensations and rarefactions in the gas, the more nearly
will it approach, in relation to the motions we have under consideration, to the condition
of an incompressible fluid ; the more nearly will the conditions of the displacement of
the gas at the surface of the solid be satisfied by a merely local reciprocating flow.

This explanation when once it suggested itself seemed so simple and obvious that 1
could not doubt that it afforded the true mode of accounting for the phenomenon. It
remained only to test the accuracy of the assigned cause by actual numerical calculation
in some case or cases sufficiently simple to permit of precise analytical determination.
The result of calculations of the kind applied to a sphere proved that the assigned cause
was abundantly sufficient to account for the observed result. I have not hitherto pub-
lished these results; but as the phenomenon has not to my knowledge been satisfac-
torily explained by others, I venture to hope that the explanation I have to offer, sim-
ple as it is in principle, may not be unworthy of the notice of the Royal Society.

For the purpose of exact analytical investigation I have taken the two cases of a vibra-
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ting sphere and a long vibrating cylinder, the motion of the fluid in the latter case being
supposed to be in two dimensions. The sphere is chosen as the best representative of a
bell, among the few geometrical forms of body for which the problem can be solved.
The cylinder is chosen as the representative of a vibrating string. In the case of the
sphere the problem is identical with that solved by PorssoN in his memoir “Sur les
movements simultanés d'un pendule et de l'air environnant”*, but the solution is dis-
cussed with a totally different object in view, and is obtained from the beginning, to
avoid the needless complexity introduced by taking account of the initial circumstances,
instead of supposing the motion already going on.

A. Solution of the Problem in the case of a Vibrating Sphere.

Suppose an elastic solid, spherical externally in its undisturbed position, to vibrate
in the manner of a bell, the amplitude of vibration being very small. Suppose it
surrounded by a homogeneous gas, which is at rest except in so far as it is set in mo-
tion by the sphere; and letit be required to determine the motion of the gasin terms of
that of the sphere supposed given. We may evidently for the purposes of the present
problem suppose the gas not to be subject to the action of external forces.

Let the gas be referred to the rectangular axes of #, ¥, 2, and let u, v, w be the com-
ponents of the velocity. Since the gas is at rest except as to the disturbance commu-
nicated to it from the sphere, u, v, w are by a well-known theorem the partial differen-
tial coefficients with respect to @, 7, z of a function ¢ of the coordinates; and if a* be
the constant expressing the ratio of the small variations of pressure to the corresponding
small variations of density, we must have

d? d?  d%

e =a (dm2+d¢;+dz> € )
and if s be the small condensation,

__ldp

T dt

As we have to deal with a sphere, it will be convenient to refer the gas to polar coor-
dinates 7, ¢, w, the origin being in the centre. In terms of these coordinates, equation
(1) becomes

d’p Pp 2 dp 1 dy. ,dp 1 & '
= {d7“2+ dr'_l_r2 sin § E@(Sme d()) —I_r2 sin?g dw?(’ - ° (2)
and if o/, v/, w' be the components of the velocity along the radius vector and in two

directions perpendicular to the radius vector, the first in and the second perpendicular
to the plane in which 4 is measured,

%‘"d¢9
7'

1lde o1 dp
v'= r g’ w_.rsinedw.........(?))

Let ¢ be the radius of the sphere, and V the velocity of any point of its surface

# Mémoires de I’Académie des Sciences, t. xi. p. 521.
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resolved in a direction normal to the surface, V being a given function of ¢, ¢, and &;
then we must have

%:V,Whenr=o. N )

Another condition, arising from what takes place at a great distance from the sphere,
‘will be considered presently.

The sphere vibrating under the action of its elastic forces, its motion will be periodic,
expressed so far as the time is concerned partly by the sine and partly by the cosine of
an angle proportional to the time, suppose matf.. Actually the vibrations will slowly
die away, in consequence partly of the imperfect elasticity of the sphere, partly of com-
munication of motion to the gas, but for our present purpose this need not be taken into
account. Moreover there will in general be a series of periodic disturbances coexisting,
corresponding to different periodic times, but these may be considered separately. We
might therefore assume

V=U sin mat+ U’ cos mat,

but it will materially shorten the investigation to employ an imaginary exponential in-
stead of circular functions. - If we take

vV=Uée", . . . . . . . . . . .. (5
where ¢ is an abbreviation for o/ —1, and determine ¢ by the conditions of the problem,
the real and imaginary parts of ¢ and V must satisfy all those conditions separately;
and therefore we may take the real parts alone, or the coefficients of ¢ or /' —1 in the
imaginary parts, or any linear combination of these even after having changed the arbi-
trary constants which enter into the expression of the motion of the sphere, as the solu-
tion of the problem, according to the way in which we conceive the given quantity V
expressed.

The function ¢ will be periodic in a similar manner to V, so that we may take

R (1)

As regards the periodicity merely, we might have had a term involving e~™* as well

as that written above; but it will be readily seen that in order to satisfy the equation

of condition (4) the sign of the index of the exponential in ¢ must be the same as in V.

On substituting in (2) the expression for ¢ given by (6), the factor involving # will

divide out, and we shall get for the determination of +) a partial differential equation
free from ¢. Now + may be expanded in a series of Laprace’s Functions so that

N N €5

Substituting in the differential equation just mentioned, taking account of the funda-
mental equation

1 d d‘lb,, 1 d? "\’»’n
Sind df (S‘ ) ) 5y e = Db
and equating to zero the sum of the LapLACE’S Functions of the same order, we find

Py 2 dy nnt1 ,
d;.t; +,. :ll; nre ")‘Pn"'"m 4’n=0’
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This equation belongs to a known integrable form. The integral is

7’\?/,,:'&6,,3“""{1 +n(n+ 1)+(n-—1)n(n+ 1)(n+2) .. }

. imr - 2. 4(imr)?

+u:36imr {l_n(n+l)+(n_l)n(n+l)("+2)_ .. .},

2. imr 2 . 4 (imr)?
u, and u, being evidently LaprAcE’s Functions of the order m, since that is the case
with 4, :
It will be convenient to take next the condition which has to be satisfied at a great

distance from the sphere. "When 7 is very large the series within braces may be reduced
to their first terms 1, and we shall have

7.¢ — eim(at—r)zun + eim(at-l-r)zu; .
The first of these terms denotes a disturbance travelling outwards from the centre, the
second a disturbance travelling towards the centre, the amplitude of vibration in both
cases, for a given phase, varying inversely as the distance from the centre. In the
problem before us there is no disturbance travelling towards the centre, and therefore

3u,=0, which requires that each function %, should separately be equal to zero. We
have therefore simply

- n(n+1) , (n—1)...(n+2) 1.2.3...2n
M =1y¢ {H‘ s T s.aGm)® T teae. sy 0 0 - (8
or, if we choose to reverse the series,
) —imr 1:3.5...(2n—1) on (2n—2)2n . 2.4.6...20 ,. .
=, (emr)™ {1+1.2n”m’"+i.2(2n~1)2n(‘W)g'“+1.2.3...2n(’m’“) - (9)

Putting for shortness f,(r) for the multiplier of w,e~" on the right-hand member. of
(8) or (9), we shall have

¢ =% ¢ =3, fo(1).

It remains to satisfy the equation of condition (4). Put for shortness
41 _, R
P {; 6"’"’ﬁ(’”)}= —m e E(r),
F,(r)=A+imr)f,(r)—rfo(r), . . . . . . . . . (10)

and suppose U expanded in a series of LAPLACE’S Functions,
U+ Ui+ Uo+...;

then substituting and equating the functions of the same order on the two sides of the
equation, we have

so that

|
U,=—¢"™F,(c)u

and therefore

2 . U, |
<P=—--;e’""“"'”’2F"c)f;(r). N ¢ 8 B

This expression contains the solution of the problem, and it remains only to discuss it.
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At a great distance from the sphere the function f,(r) becomes ultimately equal to 1,
and we have
U,
Fofe)
It appears from (3) that the component of the velocity along the radius vector is of the
order 7', and that in any direction perpendicular to the radius vector of the order r~2,
so that the lateral motion may be disregarded except in the neighbourhood of the sphere.

In order to examine the influence of the lateral motion in the neighbourhood of the
sphere, let us compare the actual disturbance at a great distance with what it would
have been if all lateral motion had been prevented, suppose by infinitely thin conical
partitions dividing the fluid into elementary canals, each bounded by a conical surface
having its vertex at the centre.

On this supposition the motion in any canal would evidently be the same as it would
be in all directions if the sphere vibrated by contraction and expansion of the surface,
the same all round, and such that the normal velocity of the surface was the same as it
is at the particular point at which the canal in question abuts on the surface. Now if
U were constant the expansion of U would be reduced to its first term U,, and seeing
that f(r)=1 we should have from (11)

2
‘p — __c_ gimat—r+te) UO R

r Fole)
This expression will apply to any particular canal if we take U, to denote the normal
velocity at the sphere’s surface for that particular canal; and therefore to obtain an
expression applicable at once to all the canals we have merely to write U for U,. To
facilitate a comparison with (11)and (12) I shall, however, write 3U, for U. We have
then

(12)

qD — __Cf eim(at—r+c)2
r

¢ imtat=rc) 2 U
q§=—7e“+’m. T ¢ E:))

It must be remembered that this is merely an expression applicable at once to all the
canals, the motion in each of which takes place wholly along the radius vector, and
accordingly the expression is not to be differentiated with respect to § or w with the view
of applying the formule (3).

On comparing (13) with the expression for the function ¢ in the actual motion at a
great distance from the sphere (12), we see that the two are identical with the exception
that U, is divided by two different constants, namely Fy(c) in the former case and F,(c)
in the latter. The same will be true of the leading terms (or those of the order 7~*) in

the expressions for the condensation and velocity*. Hence if the mode of vibration of

* Of course it would be true if the complete differential coefficients with respect to » of the right-hand
members of (12) and (18) were taken, but then the former does not give the velocity «' except as to its leading
term, since (12) has been deduced from the exact expression (11) by reducing £,(») to its first term 1; nor again

is it true, except as to terms of the order »~', of the actual motion of the unimpeded fluid that the whole velo~
city is in the direction of the radius vector.
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the sphere is such that the normal velocity of its surface is expressed by a LAPLACE’S
Function of any one order, the disturbance at a great distance from the sphere will vary
from one direction to another according to the same law as if lateral motion had been
prevented, the amplitude of excursion at a given distance from the centre varying in
both cases as the amplitude ‘of excursion, in a normal direction, of the surface of the
sphere itself. The only difference is that expressed by the symbolic ratio F,(c): Fy(c).
If we suppose F,(c) reduced to the form w,(cose,++/—1sing,), the amplitude of
vibration in the actual case will be to that in the supposed case as w, to w,, and the
phases in the two cases will differ by «,—a,.

If the normal velocity of the surface of the sphere be ot expressible by a single
LaprAcE’'s Function, but only by a series, finite or infinite, of such functions, the dis-
turbance at a given great distance from the centre will no longer vary from one direction
to another according to the same law as the normal velocity of the surface of the sphere,
since the modulus w, and likewise the amplitude «, of the imaginary quantity ¥,(c) vary
with the order of the function.

Let us now suppose the disturbance expressed by a Laprace’s Function of some one
order, and seek the numerical value of the alteration of intensity at a distance, produced
by the lateral motion which actually exists.

The intensity will be measured by the vis véiva produced in a given time, and conse-
quently will vary as the density multiplied by the velocity of propagation multiplied by
the square of the amplitude of vibration. It is the last factor alone that is different
from what it would have been if there had been no lateral motion. The amplitude is
altered in the proportion of w, to w,, so that if

I, is the quantity by which the intensity which would have existed if the fluid had been
hindered from lateral motion has to be divided.
For the first five orders the values of the function F,(c) are as follows :—

Fy(¢)=ime+ 1,
F(c)=ime+ 2+ Z—n%
9
¥,(c)=ime+ 4 +zmc + oy (ime)?’
60 60
(C) =time+ T + zmc (imc)? + Gimep? (zmc)

240 525
Fy(e)=ime+11+ zmc+ (tmc)? + (zmc)6 + (ime)*

If A be the length of the sound-wave corresponding to the period of the vibration,

m=27”, so that me is the ratio of the circumference of the sphere to the length of a
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wave. If we suppose the gas to be air and A to be 2 feet, which would correspond to
about 550 vibrations in a second, and the circumference 2z¢ to be 1 foot (a size and
pitch which would correspond with the case of a common house bell), we shall have
mc=%. The following Table gives the values of the square of the modulus and of the
ratio I, for the functions F,(c) of the first five orders, for each of the values 4, 2, 1, 4,
and § of me. It will presently appear why the Table has been extended further in the
direction of values greater than } than it has in the opposite direction. Five significant
figures at least are retained.

me. n=0. n=1. n=2. n=3y. n=4.
4 17 16:25 14:879 13-848 20177 a3
2 5 5 93125 80 14958 =
1 2 5 89 3965 300137 2
05 125 16:25 1330-2 236191 72086371 B
025 1-0625 64062 20878 14837899 18160 x 10° S
4 1 0:95588 0'87523 0:81459 111869 | .k
2 1 1 1-8625 16 29916 o
1 1 25 445 19825 150068 2
05 1 13 1064-2 188953 57669097 =
025 1 60-294 19650 13965 x 10° | 17092 x 10° i

When me=co we get from the analytical expressions I,=1. Wesee from the Table
that when me is somewhat large I, is liable to be @ little less than 1, and consequently the
sound to be a little more intense than if lateral motion had been prevented. The pos-
sibility of this is explained by considering that the waves of condensation spreading from
those compartments of the sphere which at a given moment are vibrating positively, %. e.
outwards, after the lapse of a half period may have spread over the neighbouring com-
partments, which are now in their turn vibrating positively, so that these latter com-
partments in their outward motion work against a somewhat greater pressure than if
each compartment had opposite to it only the vibration of the gas which it had itself
occasioned ; and the same explanation applies mutatis mutandis to the waves of rare-
faction. However, the increase of sound thus occasioned by the existence of lateral
motion is but small in any case, whereas when me¢ is somewhat small I, increases enor-
mously, and the sound becomes a mere nothing compared with what it would have -been
had lateral motion been prevented.

The higher be the order of the function, the greater will be the number of com-
partments, alternately positive and negative as to their mode of vibration at a given
moment, into which the surface of the sphere will be divided. We see from the Table
that for a given periodic time as well as radius the value of I, becomes considerable
when # is somewhat high. However practically vibrations of this kind are produced
when the elastic sphere executes, not its principal, but one of its subordinate vibra-
tions, the pitch corresponding to which rises with the order of the vibration, so that m
increases with that order. It was for this reason that the Table was extended from
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me=05 further in the direction of high pitch than low pltch namely, to three octaves
higher and only one octave lower.

When the sphere vibrates symmetrically about the centre, . e. so that any two oppo-
site points of the surface are at a given moment moving with equal velocities in oppo-
site directions, or more generally when the mode of vibration is such that there is no
change of position of the centre of gravity of the volume, there is no term of the order 1-
For a sphere vibrating in the manner of a bell the principal vibration is that expressed
‘by a term of the order 2, to which I shall now more particularly attend.

Putting, for shortness, m*c*=¢q, we have

wm=q+1, wi=(¢!— 9"+ (4——) —q—2+9+ﬂ ’

®—2¢%+9¢+81
¢*(g+1)

. 12:

The minimum value of I, is determined by
¢*—6¢*—84¢—54=0,
giving approximately
¢=12-859, me=3686, w;=13-869, p3=12:049, I,=-86941;
so that the utmost increase of sound produced by lateral motion amounts to about:
15 per cent.

I come now more particularly to LESLIE'S experiments. Nothing is stated as to the
form, size, or pitch of his bell; and even if these had been accurately described, there
would have been a good deal of guesswork in fixing on the size of the sphere which
should be considered the best representative of the bell. Hence all we can do is to
choose such values for m and ¢ as are comparable with the probable conditions of the
experiment.

I possess a bell, belonging to an old bell-in-air apparatus, which may probably be
somewhat similar to that used by Lestie. It is nearly hemispherical, the diameter is
1-96 inch, and the pitch an octave above the middle C of a piano. Taking the number
of vibrations 1056 per second, and the velocity of sound in air 1100 feet per second, we
have A=125 inches. To represent the bell by a sphere of the same radius would be
very greatly to underrate the influence of local circulation, since near the mouth the gas
has but a little way to get round from the outside to the inside, or the reverse. To repre-

“sent it by a sphere of half the radius would still apparently be to underrate the effect.
Nevertheless for the sake of rather underestimating than exaggerating the influence of
the cause here investigated, I will make these two suppositions successively, giving
respectively ¢='98 and ¢="49, me="4926, and mc="2463 for air.

If it were not for lateral motion the intensity would vary from gas to gas in the pro-
portion of the density into the velocity of propagation, and therefore as the pressure
into the square root of the density under a standard pressure, if we take the factor de-
pending on the development of heat as sensibly the same for the gases and gaseous mix-
tures with which we have to deal. In the following Table the first column gives the

MDCCCLXVIIL. 3s
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gas, the second the pressure p, in atmospheres, the third the density D under the pres-
sure p, referred to the density of air at the atmospheric pressure as unity, the fourth, Q,,
what would have been the intensity had the motion been wholly radial, referred to the
intensity in air at atmospheric pressure as unity, or, in other words, a quantity varying
as pX (the density at pressure 1)!. Then follow the values of ¢, I,, and Q, the last
being the actual intensity referring to air as before.

c=98. c="49.
Gas. P D. Qr.
. q L. Q. q. L. Q.
7. N e b | 1 1 2427 1136)1 06067 20890 |1
Hydrogen ...............|1 0690 | *2627 |+01674/284700| *001048 | <004186 | 4604000 001191
Air, rarefied ............| *01 01 01 2427 1136] -01 «06067 20890 | <01

The same filled with 0783 | *2798+01900/220600| 001440 |-004751 | 3572000 <001637
Air of same density ...| ‘0783 | *0783| 0783 |-2427 | 1136| ‘0783 |-06067 20890 | 0783
Air rarefied 3 ......... 5 5 5 2427 1136| *5 +06067 20890 | 5

The same filled with H|l 5345 | *7311 | +1297 4322| *1921 +0324 74890 | -2039

—

An inspection of the numbers contained in the columns headed Q will show that the
cause here investigated is amply sufficient to account for the facts mentioned by LesLik.

It may be noticed that while ¢ is 4 times smaller, and I, is 16 or 18 times larger, for
¢="49 than for ¢="98, there is no great difference in the values of Q in the two cases
for hydrogen and mixtures of hydrogen and air in given proportions. This arises from
the circumstance that ¢ is sufficiently small to make the last terms in wy and 2, namely,
1 and 81¢~%, the most important, so that I, does does not greatly differ from 81¢~2 If
this result had been exact instead of approximate, the intensity in different gases, sup-
posed for simplicity to be at a common pressure, would have varied as D#; and it will be
found that for the cases in which p=1 the values of Q in the above Table, especially
those in the last column, do not greatly deviate from this proportion. But the simplicity
of this result depends on two things. First, the vibration must be expressed by a
Larrace’s function of the order 2; for a different order the power of D would have been
different ; and this is just one of the points respecting which we cannot infer what would
be true of a bell of the ordinary shape from what we have proved for a sphere.
Secondly, the radius must be sufliciently small, or the pitch sufficiently low, to make ¢
small; at the other extremity of the scale, in which ¢ is supposed to be very large, or A
very small, Q varies nearly as D? instead of D%, whatever be the order of the LAPLACE'S
function. Hence no simple relation can be expected between the numbers furnished
by experiment and the numerical constants of the gas in such experiments as those of
M. PrroLLE*, in which the same bell was rung in succession in different gases.

B. Solution of the Problem in the case of a Vibrating Cylinder.

I will here suppose the motion to be in two dimensions only. In the case of a
vibrating string, which I have mainly in view, it is true that the amplitude of excursion

* Mémoires de I’Académie des Sciences de Turin, t. iii. (1786-7) ; Mém. des Correspondans, p. 1.
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of the string varies sensibly on proceeding even a moderate distance along it, and that
the propagation of the sound-wave produced by no means takes place in two dimensions
only. But the question how far a sound-wave is produced at all, and how far the dis-
placement of the gas by the cylinder merely produces a local motion to and fro, is de-
cided by what takes place in the immediate neighbourhood of the string, such as
within a distance of a few diameters; and though the sound-wave, when once produced,
in its subsequent progress diverges in three dimensions, the same takes place with the
hypothetical sound-wave which would be produced if lateral motion were prevented, so
that the comparison which it is the object of the investigation to institute is not affected
thereby.

Assuming, then, the motion to be in two dimensions, and referring the fluid to polar
coordinates, 7, ¢, 7 being measured from the axis of the undisturbed cylinder, we shall
have for the fundamental equation derived from (1)

d? ldp 1 42
de_{ PR EAR Y e (1)

and if o/, o' be the components of the velocity along and perpendicular to the radius
vector,

’M/I# fif s Q)I 1 d(P

dr rdy
If ¢ be the radius of the cylinder, and V the normal component of the velocity of the
surface of the cylinder, we must have

?—V when r=c.

As before, I will suppose the motion of the cylinder, and consequently of the fluid, to be
regularly periodic, but instead of using circular functions directly I will employ the ima-~
ginary exponential ¢™, ¢ denoting as before n/ —1, and will put accordingly V=¢"*U,
U being a given function of 4, and p=y¥¢™*. For a given value of 7, 4 may by a known
theorem be developed in a series of sines and cosines of § and its niultiples, and therefore
for general values of 7 can be so developed, the coefficients being functions of . If ¥,
be the coefficient of cos #6 or sin #d, we find

a*,  1dy, =2 2
L g, =0. . L (15)

If we suppose the normal velocity of the surface of the cylinder to vary in a given
manner from one generating line to another, so that U is a given function of 4, we may
expand U in a series of the form

U=U,+4U,cos6+U,cos 20+. . .
+ U, sin 4 U, sin 26+4-. . .
On applying now the equation of condition which has to be satisfied at the surface of

the cylinder, we see that a term U, cosn or Ul sinzf of the nth order in the expression
382
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for U will introduce a function ¥, of the same order in the general expression for ¢.
Now the only case of interest relating to an infinite cylinder is that of a vibrating string,
in which the cylinder moves as a whole. The vibration may be regarded as compounded
of the vibrations in any two rectangular planes passing through the axis, the phases of
the component vibrations, it may be, being different. These component vibrations may
be treated separately, and thus it will' suffice to suppose the vibration confined to one
plane, which we may take to be that from which § is measured. We shall accordingly

have
U=U, cosé,

U, being a given constant, and the only function ), which will appear in the general
expression for ¢ will be that of the order 1. Besides this we shall have to investigate,
for the sake of comparison, an ideal vibration in which the cylinder alternately contracts
and expands in all directions alike, and for which accordingly U is a constant U,. Hence
the equation (15) need only be considered for the values 0 and 1 of n.

‘For general values of » the equation (15) is easily integrated in the form of infinite
series according to ascending powers of . The result is

‘ . mr? mirt \
Ya=Ar {1 —ie+eyTTAGr AT " }
2 2

- mért
+Br {1" 52— 2n)+’4( g on)(d—2n) }

When # is any integer the integral as it stands becomes illusory; but the complete
integral, which in this case assumes a special form, is readily obtained as a limiting case
of the complete integral for general values of n.

The series in (16) are convergent for any value of 7 however great, but they give us
no information of what becomes of the functions for very large values of 7.

‘When 7 is very large, the equation (15) becomes approximately

d ;.I;n +m2'4/n= 0,

(16)

the integral of which is«,=Re¢~""+4R'¢™, where R and R’ are constant. This suggests
putting the complete integral of (15) under the same form, R and R' being now functions
of 7, which, when 7 is large, vary but slowly, that is, remain nearly constant when 7 is
altered by only a small multiple of A. Assuming for R and R’ series of the form
Ar*+Brf4-Cr. . ., where o, 3, y... are in decreasing order algebraically, and deter-
mining the indices and coefficients so as to satisfy (15), we get for another form of the
complete integral

y— 12—4n?  (12—-4n%)(32—4n?)  (12—4n?)(3%—4n?) (5% —4n?)
= C(imr) e {1_ 1.8imr 1.2(8imr)® 1.2.3(8im)?

} (17)
(12--4n%)(8%2—4n?) = (12—4n?)(32—4n?)(52—4n?)
+ 1.2(8imr)* + 1.2.3(8imr)8 +- '}

(12—4n?
+D(émr)te™ {1+ i sz,)
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These series, though ultimately divergent, begin by converging rapidly when ris large,
and may be employed with great advantage when 7 is large, if we confine ourselves to
the converging part. Moreover we have at once D=0 as the condition to be satisfied
at a great distance from the cylinder. If mc were large we might employ the second
form of integral in satisfying the condition at the surface of the cylinder, and the
problem would present no further difficulty. But practically in the case of vibrating
strings mc is a very small fraction ; the series (16) are rapidly convergent, and the series
(17) cannot be employed. ‘To complete the solution of the problem therefore it is
essential to express the constants A and B in terms of C and D, or at any rate to find
the relation between A and B imposed by the condition D=0.

This may be effected by means of the complete integral of (15) expressed in the form
‘of a definite integral. For n=0 we know that

¢0=(§{E+Flog(7'sin2é’)}cos(mf'cos{)dé,’ N € £

is a third form of the integral of (15). It is not difficult to deduce from this the inte-
gral of (15) in a similar form for any integral value of #. Assuming

V=1 1Py dr,
‘and substituting in (15), we have
pott 22 dx” (2B 1)t (o =) dr + i dr=0.

Assume
?—n?=0, . . . . . . . . . .. (19)

divide the equation by 7%, differentiate with respect to 7, and then divide by #*. The

result is
d¥¢, , 20+2B+1 dxn

Do 2t BEL oy (9, 4 B4 1)(B—1) Kt =0,
This equation will be of the same form as (15) provided,
at+B=0,

which reduces the coefficient of the last term but one to —(«<1)%. In order that this
coefficient may be increased we must choose the positive root of (19), namely », which I
will suppose positive. Hence

/A ¢41)

T T 2 X120 =0,

gives

the same equation as that for the determination of +,,,. Hence expressing ¥, in terms
.of +J, from (20), writing n—1 for n, and replacing y,_, by ,, we have

d
\Ln=7'n_l dar P l)"/n—ly
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a formula of reduction which when # is integral serves to express+}, in terms of ,, We
have
1 d\"
%:w(m;%,..........,..(21)

an equation which when applied to (18) gives the complete integral of (15) for integral
values of # in the form of a definite integral.

Let us attend now more particularly to the case of n=0. The equation (16) is of
the form 4, = Af{n)+Bf(—n), f(n) containing r as well asn. Expanding by MACLAURIN'S
Theorem, we have

2
b=(A+BY0)+A-B)f O+ (A+BS(0) 75+ -
Writing A for A+ B, »~'B for A—B, and then making » vanish, we have
Y= Af0)-+ B (0),

or
2,2 4.4 6,6
«,L(,:(A-}—Blog?")(l——%-l-%—g%%e—l— )
(22)
2,2 4,4 67.6
+B<T2—§sl_%s2+§%é—gss—...), )
where

S,=1"'42-1+3"1... +aL
The integral in the form (17) assumes no peculiar shape when # is integral, and we have
at once

Y= C(z’miﬂ)“*e“"m’{l —

12 1232 193959 \
1.8mr T1.2(8mr)2" 1.2.3(8imr)3 " " } I
2 232 23252 t

+D (imr)—éew{“‘ 1. flsz'mr+ 1. 21(8?;mr)2_ 1. 21. g(gimr)s_l_ . }

1 have explained at length the mode of dealing with such functions, and especially of
connecting the arbitrary constants in the ascending and descending series, in two papers
published 1 the Transactions of the Cambridge Philosophical Society¥, in the second
of which the connexion of the constants is worked out in this very example. To these
I will refer, merely observing that while it is perfectly easy to connect A, B with E, F,
the connexion of C, D with E, F involves some extremely curious points of analysis.
The result of eliminating E, F between the two equations connecting A, B with E, F
and the two connecting C, D with E, F is given, except as to notation, in the two equa-
tions (41) of my second paper. To render the notation identical with that of the former
paper, it will be sufficient to write A —Blog (ém)-+B log (éimr) for A+4Blogr, and & for
imr. The equations referred to may be simplified by the introduction of EULER’s con-
stant y, the value of which is 57721666 &c., since it is known that

7 1"(4)+ log 4+9=0,

#* «(On the Numerical Calculation of a Class of Definite Integrals and Infinite Series,” vol. ix. p. 166, and
“ On the Discontinuity of Arbitrary Constants which appear in Divergent Developments,” vol. x. p. 105. A
supplement to the latter paper has recently been read before the Cambridge Philosophical Society.

(23)
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I"(z) denoting the derivative of the function I'(z). Putting
A—Blogim=A/,
we have by equations (41) of the second paper referred to
C=(27)*{iA'+[(log2—y)i—=]B}, . . . . . . . . (24)
D=(27)"#A'+(log2—y)B}, . . . . . . . . . . (29)
¢ being written for \/ —1. TItis shown in that paper that these values of C, D hold
good when the amplitude of the imaginary variable & lies between the limits 0 and 7, or

that of r (supposed to be imaginary) between the limits —3;- and 7—2', but in crossing

either of these limits one or other of the constants C, D is changed. In the investiga:
tion of the present paper 7 is of course real.
We have now
A'=A—Blogim=(y—log 2)B
for the relation between A and B arising from the condition that the motion is propa-
gated outwards from the cylinder; and substituting in (22), we have for the value of +J,
subject to this condition

> 2,.2 4,4
¢0=B<y=]-log 37;) (1—”—;;— +%~— . ) l

(26)
+B<’1‘;—fs,_’2—":4—rzsz+...); ,'
or expressed by means of the descending series,
‘1’°=_B(§z%~> e—im{l_l.é:mr+l.2;2:17‘)“—11.2%;3(;513;1')3_}—' : } .- (27
We have from (21)
h=2,

from which the complete integral of (16) for =1 may be got from that for n=0. lu
the form (17) of the integral the parts arising from differentiation of the parts contain-
ing e~ and ¢™ respectively will contain those same exponentials, and therefore the
complete integral of (15) for n=1, subject to the condition that the part containing
¢™ shall disappear, will be got by differentiating the complete integral for n=0 subject
to that same condition. The form of the integral in the shape of a descending series
is given at once by (17). Hence we get by differentiating (26) and (27), and at the

same time changing the arbitrary constant by writing B,m~* for B,

2,.2 4,4
«p,:f%{{l-%i—%i—ﬁ-...}
] 3, 500

~B,(7+log "’{) (”—2@_’2’—;_’—:+§§%’;—6—...} @8

~

mr m3r3 mrd
+B1 ("2— Sx_m Sz+22_42.6 Ss—“' }

%:Bl(_ﬁ‘)%e_w{l =13 —1.1.3.5 —1.1.325.7 } L@

2mr T1.8mr " 1.2(8mr)2  1.2.3(8mr)? +.
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To determine the arbitrary constants B, and B, the first belonging to the actual
motion, the second to the motion which would take place if the fluid were confined by
an infinite number of planes passing through the axis, we must have, as before, for r=c,

dtl!o d,

""Un '—'Ul’
whence '
cU m2c?  mict m2?  mict ‘
| -_B—’=1--§—g‘+me—- <7+log ) ;i )(T -2_‘71—'_)
m2c? m8¢b \
) +"§—Sl 22 S+22 42.6 a"‘-“ e e (30)

=F,(me)+4 g fo(me), suppose‘;

U, _ 1 _3me JmPc® 1lmb
B, T T me— 22 122,427 92.4%, 69+
me  3m3c® i
(7+10g 2 +Z )(“‘ m“{-)

amseS s S 1

+212_csl— 924 Sz+22 42.683_

=”~1w {F,( me)-+i g f,(mc)}, suppose.

If I be the ratio of the intensities at a distance in the supposed and in the actual
case, we see from (30) and (31) that I will be equal to the ratio of the squares of the
moduli of B and B,, and we shtall therefore have

= URm el (g
mgcg[‘l{Fo(mc)}Q'*"’"I{fo(mc)}ﬂ C

For a piano string corresponding to the middle C, ¢ may be about ‘02 inch, and A is
about. 25 inches. This gives me=-005027. For such small values of mec I does not
sensibly differ from (me)~2 which in the present case is 39571, so that the sound is
nearly 40000 times weaker than it would have been if the motion of the particles of air
had taken place in planes passing through the axis of the string. This shows the vital
importance of sounding-boards in stringed instruments. Although the amplitude of
vibration of the particles of the sounding-board is extremely small compared with that
of the particles of the string, yet as it presents a broad surface to the air it is able to
excite loud sonorous vibrations, whereas were the string supported in an absolutely rigid
manner, the vibrations which it could excite directly in the air would be so small as to
be almost or altogether inaudible.

I may here mention a phenomenon which fell under my notice, and which is readily
explained by the principles laid down in this paper. As I was walking one windy day
on a road near Cambridge, on the other side of which ran a line of telegraph, my atten-
tion was attracted by a peculiar sound of extremely high pitch, which seemed to come
from the opposite side of the road. On going over to ascertain the cause, I found that
it came directly through air from the telegraph wires. On. standing near a telegraph
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post, the ordinary comparatively bass sound with which we are so familiar was heard,
appearing to emanate from the post. On receding from the post the bass sound became
feebler, and midway between two posts was quite inaudible. Nothing was then heard
but the peculiar high-pitched sound, which appeared to emanate from the wires over-
head. It had a peculiar metallic ring about it which the ear distinguished from the
whistling of the wind in the twigs of a bush. Although the telegraph ran for miles, it
was only at one spot that the peculiar sound was noticed, and even there only in certain
states of the wind. The wires seemed to be less curved than usual at the place in ques-
tion, from which it may be inferred that they were there subject to an unusually great
tension. _

The explanation of the phenomenon is easy after what precedes. The wires were
thrown into vibration by the wind, and a number of different vibrations, having different
periodic times, coexisted. As regards the vibrations of comparatively long period, the
air around the wires behaved nearly like an incompressible fluid, and no sonorous
vibrations of sensible amount were produced. These vibrations of the wires were,
however, communicated to the posts, which being broad acted as sounding-boards, and
thus sonorous vibrations of corresponding period were indirectly excited in the air. But
as regards the vibrations of extremely short periodic time, the wires in spite of their
narrowness were able by acting directly on the air to produce condensations and rare-
factions of sensible amount.

The diameter of the telegraph wire was about “166 inch; and if we take the C below
the middle C of a piano for the representative of the pitch of the lower note, and a note
five octaves higher for that of the higher, we have in the first case A=>50 inches nearly,
and in the second A=50 X 2%, giving in the former case mc="01043, and in the latter
me=-3388 The former of these values is so small that we may take I=(mec)~*; in the
latter case the formula (32) gives for I avalue a little less than (mc¢)~ We find in the
two cases [=9192 and I=7-202 respectively, so that in the former case the sound is
more than 9000 times feebler than that corresponding to the amplitude of vibration of
the wire on the supposition of the absence of lateral motion, whereas in the latter case
the actual intensity is nearly one-seventh of the full intensity corresponding to the
amplitude.

The increase of sound produced by the stoppage of lateral motion may be prettily
exhibited by a very simple experiment. Take a tuning-fork, and holding it in the
fingers after it has been made to vibrate, place a sheet of paper
or the blade of a broad knife with its edge parallel to the
axis of the fork, and as near to the fork as conveniently ¢
may be without touching. If the plane of the obstacle /
coincide with either of the planes of symmetry of the fork,
as represented in section at A or B, no effect is produced; - e
but if it be placed in an intermediate position, such as C, the '
sound becomes much stronger.
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